Imaging data types
This section pertains to imaging data, which characteristically have spatial extent and resolution.
Preprocessed, coregistered and/or resampled volumes
Template:
<pipeline_name>/
sub-<label>/
[ses-<label>/]
<datatype>/
<source_entities>[_space-<space>][_res-<label>][_den-<label>][_desc-<label>]_<suffix>.<extension>
Volumetric preprocessing does not modify the number of dimensions, and so the specifications in Preprocessed or cleaned data apply. The use of surface meshes and volumetric measures sampled to those meshes is sufficiently similar in practice to treat them equivalently.
When two or more instances of a given derivative are provided with resolution
or surface sampling density being the only difference between them, then the
res
(for resolution of regularly sampled N-D data) and/or
den
(for density of non-parametric surfaces)
entities SHOULD be used to avoid name conflicts.
Note that only files combining both regularly sampled (for example, gridded)
and surface sampled data (and their downstream derivatives) are allowed
to present both res
and
den
entities simultaneously.
Examples:
└─ pipeline1/
└─ sub-001/
└─ func/
├─ sub-001_task-rest_run-1_space-MNI305_res-lo_bold.nii.gz
├─ sub-001_task-rest_run-1_space-MNI305_res-hi_bold.nii.gz
└─ sub-001_task-rest_run-1_space-MNI305_bold.json
The following metadata JSON fields are defined for preprocessed images:
Key name | Requirement Level | Data type | Description |
---|---|---|---|
SkullStripped | REQUIRED | boolean | Whether the volume was skull stripped (non-brain voxels set to zero) or not. Must be one of: "true" , "false" . |
Resolution | REQUIRED if res is present |
string or object of strings | Specifies the interpretation of the resolution keyword. If an object is used, then the keys should be values for the res entity and values should be descriptions of those res values. |
Density | REQUIRED if den is present |
string or object of strings | Specifies the interpretation of the density keyword. If an object is used, then the keys should be values for the den entity and values should be descriptions of those den values. |
Example JSON file corresponding to
pipeline1/sub-001/func/sub-001_task-rest_run-1_space-MNI305_bold.json
above:
{
"SkullStripped": true,
"Resolution": {
"hi": "Matched with high-resolution T1w (0.7mm, isotropic)",
"lo": "Matched with original BOLD resolution (2x2x3 mm^3)"
}
}
This would be equivalent to having two JSON metadata files, one
corresponding to res-lo
(pipeline1/sub-001/func/sub-001_task-rest_run-1_space-MNI305_res-lo_bold.json
):
{
"SkullStripped": true,
"Resolution": "Matched with original BOLD resolution (2x2x3 mm^3)"
}
And one corresponding to res-hi
(pipeline1/sub-001/func/sub-001_task-rest_run-1_space-MNI305_res-hi_bold.json
):
{
"SkullStripped": true,
"Resolution": "Matched with high-resolution T1w (0.7mm, isotropic)"
}
Example of CIFTI-2 files (a format that combines regularly sampled data
and non-parametric surfaces) having both res
and den
entities:
└─ pipeline1/
└─ sub-001/
└─ func/
├─ sub-001_task-rest_run-1_space-fsLR_res-1_den-10k_bold.dtseries.nii
├─ sub-001_task-rest_run-1_space-fsLR_res-1_den-41k_bold.dtseries.nii
├─ sub-001_task-rest_run-1_space-fsLR_res-2_den-10k_bold.dtseries.nii
├─ sub-001_task-rest_run-1_space-fsLR_res-2_den-41k_bold.dtseries.nii
└─ sub-001_task-rest_run-1_space-fsLR_bold.json
And the corresponding sub-001_task-rest_run-1_space-fsLR_bold.json
file:
{
"SkullStripped": true,
"Resolution": {
"1": "Matched with MNI152NLin6Asym 1.6mm isotropic",
"2": "Matched with MNI152NLin6Asym 2.0mm isotropic"
},
"Density": {
"10k": "10242 vertices per hemisphere (5th order icosahedron)",
"41k": "40962 vertices per hemisphere (6th order icosahedron)"
}
}
Masks
Template:
<pipeline_name>/
sub-<label>/
[ses-<label>/]
anat|func|dwi/
<source_entities>[_space-<space>][_res-<label>][_label-<label>][_desc-<label>]_mask.json
<source_entities>[_space-<space>][_res-<label>][_label-<label>][_desc-<label>]_mask.nii[.gz]
A binary (1 - inside, 0 - outside) mask in the space defined by the space
entity.
If no transformation has taken place, the value of space
SHOULD be set to orig
.
If the mask is an ROI mask derived from a discrete or probabilistic segmentation,
then the label
entity SHOULD be used to specify the masked structure
(see Common image-derived labels).
JSON metadata fields:
Key name | Requirement Level | Data type | Description |
---|---|---|---|
Type | RECOMMENDED | string | Short identifier of the mask. The value "Brain" refers to a brain mask. The value "Lesion" refers to a lesion mask. The value "Face" refers to a face mask. The value "ROI" refers to a region of interest mask.Must be one of: "Brain" , "Lesion" , "Face" , "ROI" . |
Sources | RECOMMENDED | array of strings | A list of files with the paths specified using BIDS URIs; these files were directly used in the creation of this derivative data file. For example, if a derivative A is used in the creation of another derivative B, which is in turn used to generate C in a chain of A->B->C, C should only list B in "Sources" , and B should only list A in "Sources" . However, in case both X and Y are directly used in the creation of Z, then Z should list X and Y in "Sources" , regardless of whether X was used to generate Y. Using paths specified relative to the dataset root is DEPRECATED. |
RawSources | DEPRECATED | array of strings | A list of paths relative to dataset root pointing to the BIDS-Raw file(s) that were used in the creation of this derivative. This field is DEPRECATED, and this metadata SHOULD be recorded in the Sources field using BIDS URIs to distinguish sources from different datasets. |
Resolution | REQUIRED if res is present |
string or object of strings | Specifies the interpretation of the resolution keyword. If an object is used, then the keys should be values for the res entity and values should be descriptions of those res values. |
Density | REQUIRED if den is present |
string or object of strings | Specifies the interpretation of the density keyword. If an object is used, then the keys should be values for the den entity and values should be descriptions of those den values. |
Examples:
└─ func_loc/
└─ sub-001/
└─ func/
├─ sub-001_task-rest_run-1_space-MNI305_label-PFC_mask.nii.gz
└─ sub-001_task-rest_run-1_space-MNI305_label-PFC_mask.json
└─ manual_masks/
└─ sub-001/
└─ anat/
├─ sub-001_label-tumor_mask.nii.gz
└─ sub-001_label-tumor_mask.json
Segmentations
A segmentation is a spatial partition of images and surfaces, such that each location (for example, a voxel or a surface vertex) is identified with one label (discrete) or a combination of labels (probabilistic). Labeled regions may include anatomical structures (for example, tissue classes, white matter tracts, Thalamic nuclei, cortical areas), functionally-defined networks, tumors or lesions.
A discrete segmentation represents each region with a unique integer label. A probabilistic segmentation represents each region as values between 0 and 1 (inclusive) at each location in the image, and one volume/frame per structure may be concatenated in a single file.
Segmentations may be defined in a volume (labeled voxels), a surface (labeled vertices) or a combined volume/surface space.
If different segmentations coexist within the same directory of the BIDS
structure (for example, if they were generated with two alternative tools),
the seg-<label>
entity
SHOULD be used for disambiguation.
The seg-<label>
entity MAY be used in combination
with the atlas-<label>
entity
as indicated by the Templates and Atlases section.
The following section describes discrete and probabilistic segmentations of volumes, followed by discrete segmentations of surface/combined spaces. Probabilistic segmentations of surfaces are currently unspecified.
The following metadata fields apply to all segmentation files:
Key name | Requirement Level | Data type | Description |
---|---|---|---|
SpatialReference | RECOMMENDED | string or object | For images with a single reference, the value MUST be a single string. For images with multiple references, such as surface and volume references, a JSON object MUST be used. |
Manual | OPTIONAL | boolean | Indicates if the segmentation was performed manually or via an automated process. Must be one of: "true" , "false" . |
CoordinateReportStrategy | OPTIONAL | string | Indicate the method of coordinate reporting in statistically significant clusters. Could be the "peak" statistical coordinate in the cluster or the "center_of_mass" of the cluster. Must be one of: "peak" , "center_of_mass" , "other" . |
Resolution | REQUIRED if res is present |
string or object of strings | Specifies the interpretation of the resolution keyword. If an object is used, then the keys should be values for the res entity and values should be descriptions of those res values. |
Density | REQUIRED if den is present |
string or object of strings | Specifies the interpretation of the density keyword. If an object is used, then the keys should be values for the den entity and values should be descriptions of those den values. |
Discrete Segmentations
Discrete segmentations of brain tissue represent regions with unique integer labels. See Common image-derived labels for a description of how integer values map to anatomical structures.
Template:
<pipeline_name>/
sub-<label>/
[ses-<label>/]
<data_type>/
<source_entities>[_space-<space>][_seg-<label>][_res-<label>][_desc-<label>]_dseg.json
<source_entities>[_space-<space>][_seg-<label>][_res-<label>][_desc-<label>]_dseg.nii[.gz]
<source_entities>[_space-<space>][_seg-<label>][_res-<label>][_desc-<label>]_dseg.tsv
For example, we can specify the results of a classic brain tissue segmentation algorithm of a T1w image based on a Gaussian mixture model as:
└─ pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_dseg.nii.gz
└─ sub-001_dseg.json
When several segmentations coexist at the same BIDS hierarchy point,
seg-<label>
entity SHOULD
be used for disambiguation.
For example, if the brain tissue segmentation above will be stored next
to segmentations of the eyes:
└─ pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_seg-braintissues_dseg.nii.gz
├─ sub-001_seg-braintissues_dseg.json
├─ sub-001_seg-eyes_dseg.nii.gz
└─ sub-001_seg-eyes_dseg.json
Probabilistic Segmentations
Probabilistic segmentations of brain tissue represent a single anatomical
structure with values ranging from 0 to 1 in individual 3D volumes or across
multiple frames.
If a single structure is included,
the label
entity SHOULD be used to specify
the structure.
Template:
<pipeline_name>/
sub-<label>/
[ses-<label>/]
func|anat|dwi/
<source_entities>[_space-<space>][_seg-<label>][_res-<label>][_label-<label>][_desc-<label>]_probseg.json
<source_entities>[_space-<space>][_seg-<label>][_res-<label>][_label-<label>][_desc-<label>]_probseg.nii[.gz]
Example:
└─ pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_space-orig_label-BG_probseg.nii.gz
└─ sub-001_space-orig_label-WM_probseg.nii.gz
See Common image-derived labels
for reserved values for the label
entity.
A 4D probabilistic segmentation, in which each frame corresponds to a different tissue class, must provide a label mapping in its JSON sidecar. For example:
└─ pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_space-orig_probseg.nii.gz
└─ sub-001_space-orig_probseg.json
The JSON sidecar MUST include the label-map key that specifies a tissue label for each volume:
{
"LabelMap": [
"BG",
"WM",
"GM"
]
}
Values of label
SHOULD correspond to abbreviations defined in
Common image-derived labels.
Discrete surface segmentations
Discrete surface segmentations (sometimes called parcellations) of cortical
structures MUST be stored as GIFTI label files, with the extension .label.gii
.
For combined volume/surface spaces, discrete segmentations MUST be stored as
CIFTI-2 dense label files, with the extension .dlabel.nii
.
Template:
<pipeline_name>/
sub-<label>/
[ses-<label>/]
anat/
<source_entities>[_hemi-{L|R}][_space-<space>][_seg-<label>][_res-<label>][_den-<label>][_desc-<label>]_dseg.json
<source_entities>[_hemi-{L|R}][_space-<space>][_seg-<label>][_den-<label>][_desc-<label>]_dseg.label.gii
<source_entities>[_hemi-{L|R}][_space-<space>][_seg-<label>][_res-<label>][_den-<label>][_desc-<label>]_dseg.dlabel.nii
<source_entities>[_hemi-{L|R}][_space-<space>][_seg-<label>][_res-<label>][_den-<label>][_desc-<label>]_dseg.tsv
The hemi-<label>
entity is REQUIRED for GIFTI files storing information about
a structure that is restricted to a hemibrain.
For example:
└─ pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_hemi-L_dseg.label.gii
└─ sub-001_hemi-R_dseg.label.gii
The REQUIRED extension for CIFTI parcellations is .dlabel.nii
. For example:
└─ pipeline/
└─ sub-001/
└─ anat/
└─ sub-001_dseg.dlabel.nii
Common image-derived labels
BIDS supplies a standard, generic label-index mapping, defined in the table below, that contains common image-derived segmentations and can be used to map segmentations (and parcellations) between lookup tables.
Integer value | Description | Abbreviation (label) |
---|---|---|
0 | Background | BG |
1 | Gray Matter | GM |
2 | White Matter | WM |
3 | Cerebrospinal Fluid | CSF |
4 | Bone | B |
5 | Soft Tissue | ST |
6 | Non-brain | NB |
7 | Lesion | L |
8 | Cortical Gray Matter | CGM |
9 | Subcortical Gray Matter | SGM |
10 | Brainstem | BS |
11 | Cerebellum | CBM |
These definitions can be overridden (or added to) by providing custom labels in
a sidecar <matches>.tsv
file, in which <matches>
corresponds to segmentation
filename.
Example:
└─ pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_space-orig_dseg.nii.gz
└─ sub-001_space-orig_dseg.tsv
Definitions can also be specified with a top-level dseg.tsv
, which propagates to
segmentations in relative subdirectories.
Example:
└─ pipeline/
├─ dseg.tsv
└─ sub-001/
└─ anat/
└─ sub-001_space-orig_dseg.nii.gz
These TSV lookup tables contain the following columns:
Column name | Requirement Level | Data type | Description |
---|---|---|---|
index | REQUIRED | integer | The label integer index. Values in index MUST be unique. |
name | REQUIRED | string | The unique label name. |
abbreviation | OPTIONAL | string | The unique label abbreviation |
color | OPTIONAL | string | Hexadecimal. Label color for visualization. |
mapping | OPTIONAL | integer | Corresponding integer label in the standard BIDS label lookup. |
Additional Columns | OPTIONAL | n/a |
Additional columns are allowed. |
An example, custom dseg.tsv
that defines three labels:
index | name | abbreviation | color | mapping |
---|---|---|---|---|
100 | Gray Matter | GM | #ff53bb | 1 |
101 | White Matter | WM | #2f8bbe | 2 |
102 | Brainstem | BS | #36de72 | 11 |
The following example dseg.tsv
defines regions that are not part of the
standard BIDS labels:
index | name | abbreviation |
---|---|---|
137 | pars | opercularis |
138 | pars | triangularis |
139 | pars | orbitalis |
Derivatives from atlases
Often, derivatives are atlas-based, meaning, a particular result has been derived from prior knowledge in the form of an atlas. These derivatives follow the specifications above, with the addition of a set of entities that MAY be used to disambiguate the outputs.
Template:
<pipeline_name>/
sub-<label>/
<datatype>/
<source_entities>[_space-<space>][_atlas-<label>][seg-<label>][_scale-<label>][_res-<label>][_den-<label>][_desc-<label>]_<suffix>.<extension>
-
space-<label>
is REQUIRED to disambiguate derivatives defined with respect to different coordinate systems, following the general BIDS-Derivatives specifications. -
atlas-<label>
is REQUIRED to encode files derived from the atlas identified by the entity's label. -
seg-<label>
is REQUIRED when a single atlas has several different realizations (for instance, segmentations and parcellations created with different criteria) that need disambiguation. -
scale-<label>
is REQUIRED to disambiguate different atlas 'scales', when the atlas has more than one 'brain unit' or 'areal resolution', typically relating to the number of regions defined and the area they cover.
For example, derivatives from a single subject segmented with the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).
└─ aals-pipeline/
└─ sub-01/
└─ anat/
├─ sub-01_atlas-AAL_dseg.json
├─ sub-01_atlas-AAL_dseg.nii.gz
├─ sub-01_atlas-AAL_dseg.tsv
├─ sub-01_atlas-AAL_probseg.nii.gz
├─ sub-01_label-brain_mask.nii.gz
├─ sub-01_label-head_mask.nii.gz
├─ sub-01_T1w.nii.gz
└─ sub-01_T1w.json
Because the AAL atlas was originally defined in the standardized space of MNI305, it would be unsurprising to find the anatomical reference resampled into the standard space for validation, as well as the spatial transformation file:
└─ aals-pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_atlas-AAL_dseg.json
├─ sub-001_atlas-AAL_dseg.nii.gz
├─ sub-001_atlas-AAL_dseg.tsv
├─ sub-001_atlas-AAL_probseg.nii.gz
├─ sub-001_from-T1w_to-MNI305_mode-image_xfm.h5
├─ sub-001_label-brain_mask.nii.gz
├─ sub-001_label-head_mask.nii.gz
├─ sub-001_space-MNI305_T1w.nii.gz
├─ sub-001_space-MNI305_T1w.json
├─ sub-001_T1w.nii.gz
└─ sub-001_T1w.json
Warning
Please note that the specification for spatial transforms (BEP 014) is currently under development,
and therefore, the specification of transforms files (sub-01_from-T1w_to-MNI305_mode-image_xfm.h5
in the example above) may change in the future.
In the common case of multiple segmentations and parcellations derived from an atlas,
seg-<label>
SHOULD be used in combination
with the atlas-<label>
entity.
Extending on our previous example, when the brain tissue and the eye
segmentations are stored next to the results of FreeSurfer's automatic subcortical
segmentation ("aseg") using the Destrieux2009
atlas:
└─ pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_atlas-Destrieux2009_seg-aseg_dseg.nii.gz
├─ sub-001_atlas-Destrieux2009_seg-aseg_dseg.json
├─ sub-001_atlas-Destrieux2009_seg-aseg+aparc_dseg.nii.gz
├─ sub-001_atlas-Destrieux2009_seg-aseg+aparc_dseg.json
├─ sub-001_seg-braintissues_dseg.nii.gz
├─ sub-001_seg-braintissues_dseg.json
├─ sub-001_seg-eyes_dseg.nii.gz
└─ sub-001_seg-eyes_dseg.json
Derivatives from several atlases can coexist in a single directory:
└─ aals-pipeline/
└─ sub-001/
└─ anat/
├─ sub-001_atlas-AAL_dseg.json
├─ sub-001_atlas-AAL_dseg.nii.gz
├─ sub-001_atlas-AAL_dseg.tsv
├─ sub-001_atlas-AAL_probseg.nii.gz
├─ sub-001_atlas-Destrieux2009_seg-aseg+aparc_dseg.json
├─ sub-001_atlas-Destrieux2009_seg-aseg+aparc_dseg.nii.gz
├─ sub-001_atlas-Destrieux2009_seg-aseg_dseg.json
├─ sub-001_atlas-Destrieux2009_seg-aseg_dseg.nii.gz
├─ sub-001_from-T1w_to-MNI305_mode-image_xfm.h5
├─ sub-001_label-brain_mask.nii.gz
├─ sub-001_label-head_mask.nii.gz
├─ sub-001_seg-braintissues_dseg.json
├─ sub-001_seg-braintissues_dseg.nii.gz
├─ sub-001_seg-eyes_dseg.json
├─ sub-001_seg-eyes_dseg.nii.gz
├─ sub-001_space-MNI305_T1w.json
├─ sub-001_space-MNI305_T1w.nii.gz
├─ sub-001_T1w.json
└─ sub-001_T1w.nii.gz
Atlas tabular data
Atlases are often distributed with a Look Up Table (LUT) that indexes and labels each
node/parcel/region within the atlas.
This file will be essential for downstream workflows that generate matrices or other derived files within
which node/parcel/region information is required, as the index/label fields will be used to reference
the original anatomy the index/labels are derived from.
Atlas-derived results SHOULD encode this information with the [probseg|dseg|mask].tsv
files following
the prescriptions of the Common image-derived labels section above.
Additional fields can be added with their respective definition/description in the sidecar JSON file.
Template:
<pipeline_name>/
sub-<label>/
<datatype>/
<source_entities>[_atlas-<label>][seg-<label>][_scale-<label>][_desc-<label>]_<suffix>.tsv
For example, the participant-level results using the Schaefer 2018 atlas
could be structured as follows.
Please note that, the dseg.tsv
files have been moved to the root of the
hierarchy following the common principles.
└─ bold-pipeline/
├─ atlas-Schaefer2018_dseg.json
├─ atlas-Schaefer2018_seg-7n_scale-100_dseg.tsv
├─ atlas-Schaefer2018_seg-7n_scale-200_dseg.tsv
├─ atlas-Schaefer2018_seg-7n_scale-300_dseg.tsv
├─ atlas-Schaefer2018_seg-17n_scale-100_dseg.tsv
├─ atlas-Schaefer2018_seg-17n_scale-200_dseg.tsv
├─ atlas-Schaefer2018_seg-17n_scale-300_dseg.tsv
├─ atlas-Schaefer2018_seg-kong17n_scale-100_dseg.tsv
├─ atlas-Schaefer2018_seg-kong17n_scale-200_dseg.tsv
├─ atlas-Schaefer2018_seg-kong17n_scale-300_dseg.tsv
├─ sub-01/
│ ├─ anat/
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-7n_scale-100_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-7n_scale-200_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-7n_scale-300_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-17n_scale-100_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-17n_scale-200_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-17n_scale-300_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-kong17n_scale-100_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-kong17n_scale-200_den-164k_dseg.label.gii
│ │ ├─ sub-01_hemi-L_atlas-Schaefer2018_seg-kong17n_scale-300_den-164k_dseg.label.gii
│ │ ├─ ...
│ │ └─ sub-01_hemi-R_atlas-Schaefer2018_seg-kong17n_scale-300_den-164k_dseg.label.gii
│ └─ bold/
│ ├─ sub-01_task-rest_hemi-L_den-164k_bold.func.gii
│ └─ sub-01_task-rest_hemi-R_den-164k_bold.func.gii
└─ sub-02/
├─ anat/
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-7n_scale-100_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-7n_scale-200_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-7n_scale-300_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-17n_scale-100_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-17n_scale-200_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-17n_scale-300_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-kong17n_scale-100_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-kong17n_scale-200_den-164k_dseg.label.gii
│ ├─ sub-02_hemi-L_atlas-Schaefer2018_seg-kong17n_scale-300_den-164k_dseg.label.gii
│ ├─ ...
│ └─ sub-02_hemi-R_atlas-Schaefer2018_seg-kong17n_scale-300_den-164k_dseg.label.gii
└─ bold/
├─ sub-02_task-rest_hemi-L_den-164k_bold.func.gii
└─ sub-02_task-rest_hemi-R_den-164k_bold.func.gii
Example of contents.
For example, the file atlas-Schaefer2018_seg-7n_scale-100_dseg.tsv
could look like:
index | name | color |
---|---|---|
1 | 17Networks_LH_VisCent_ExStr_1 | #781180 |
2 | 17Networks_LH_VisCent_ExStr_2 | #781181 |
3 | 17Networks_LH_VisCent_ExStr_3 | #781182 |
4 | 17Networks_LH_VisCent_ExStr_4 | #781183 |
5 | 17Networks_LH_VisCent_ExStr_5 | #781184 |
... | ||
998 | 17Networks_RH_TempPar_20 | #0d2afb |
999 | 17Networks_RH_TempPar_21 | #0d2afc |
1000 | 17Networks_RH_TempPar_22 | #0d2afd |